If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x^2=80^2
We move all terms to the left:
x^2+x^2-(80^2)=0
We add all the numbers together, and all the variables
2x^2-6400=0
a = 2; b = 0; c = -6400;
Δ = b2-4ac
Δ = 02-4·2·(-6400)
Δ = 51200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51200}=\sqrt{25600*2}=\sqrt{25600}*\sqrt{2}=160\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160\sqrt{2}}{2*2}=\frac{0-160\sqrt{2}}{4} =-\frac{160\sqrt{2}}{4} =-40\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160\sqrt{2}}{2*2}=\frac{0+160\sqrt{2}}{4} =\frac{160\sqrt{2}}{4} =40\sqrt{2} $
| 12=x/3+2 | | p=2*68+2 | | (3x-7)+(4x-18)+(2x+25)+(3x+16)+(2x+8)=180 | | (3x-7)+(4x-18)+(2x+25)+(3x+16)+2x+8=180 | | 9-15x-7-6x=5 | | (3-4)/y=1/9 | | 6h-10=4h+6 | | 84+s=10 | | 0.3+0.14y=0.42y | | 10w+3-4w+4=2w+3+7w | | 11y-3=22.3 | | c=15(35)+2000 | | -3x-16=9-2x | | 0.625x+2.5=0.375x+1.5+0.25x | | 1/4x+1/2=3(4/5x-2) | | 5x+10+2x-15+x+9=180 | | -33+.8x=13+6x | | 3x-10=10x+8 | | 6x+36/5=-54 | | 2(y+)=-y+20 | | 8h=13 | | -5/6y=-3/5 | | (x-17)+(x+35)+(x+42)=180 | | 9(3-y)=4 | | 11+13=-3(6x-8) | | 2x+10=24+90 | | -33x-8x=13+6x | | 3(5x+8)=-47+41 | | -1(x-8)=6 | | 2(3-5x)=2(5x+4) | | 5b+-2=2b+7 | | 0.2y-5(0.2y-2)=-2y+2(y-3) |